

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Axaxaxas 1.0 documentation

Axaxaxas documentation

Axaxaxas - making sense of nonsense.

Axaxaxas is a Python 3.3 implementation of an Earley parser [https://en.wikipedia.org/wiki/Earley_parser].
Earley parsers are a robust parser that can recognize any context-free grammar, with good support for amiguous grammars.
They have linear performance for a wide class of grammars, and worst case O(n^3).

	Usage
	Defining a Grammar

	Invoking the parser

	Parse results

	Optional, Star and Plus

	Greedy Symbols

	Penalty

	Customization
	Tokens

	Symbols

	Customizing ParseTrees

	Customizing Grammars

	Handling Ambiguity
	single, all, count, and __iter__

	Greedy Rules

	Builders

	Builders
	Example

	Ambiguity

	Errors and Edge Cases
	No parse

	Ambiguous Parse

	Infinite Parse

	Other notes

	Reference
	Parsing

	Errors

	Building

	Symbols

 Copyright 2015, Adam Newgas.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Axaxaxas 1.0 documentation

Usage

This section assumes you are familiar with the basic terminology involved in parsing Context Free grammars.

Defining a Grammar

A grammar is stored as a collection of ParseRule objects inside a ParseRuleSet. Each ParseRule is a single
production from a “head” (symbol named by string), to a list of Symbol objects. Multiple ParseRule objects with
the same head define alternative productions.

For example, the following Backus-Naur [https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form] notated grammar:

<sentence> ::= <noun> <verb> <noun>
<noun> ::= "man" | "dog"
<verb> ::= "bites"

Would be expressed:

from axaxaxas import ParseRule, ParseRuleSet, Terminal as T, NonTerminal as NT

grammar = ParseRuleSet()
grammar.add(ParseRule("sentence", [NT("noun"), NT("verb"), NT("noun")]))
grammar.add(ParseRule("noun", [T("man")]))
grammar.add(ParseRule("noun", [T("dog")]))
grammar.add(ParseRule("verb", [T("bites")]))

Invoking the parser

Having defined our grammar, we can attempt to parse it. Parsing operates on an iterator of token objects, There is no
lexer included. In the example above we have assumed that the tokens are Python strings, but they can be anything.
Often a formal lexer is not needed - we can use string.split to produce lists of strings.

The parser is invoked with the parse function:

from axaxaxas import parse
parse_forest = parse(grammar, "sentence", "man bites dog".split())

print(parse_forest.single())
(sentence: (noun: 'man') (verb: 'bites') (noun: 'dog'))

Parse results

parse returns a ParseForest that contains a collection of ParseTree objects. By calling single() we
check that there is exactly one possible parse tree, and return it.
See Handling Ambiguity for more details.

ParseTree objects themselves are a fairly straightforward representation. ParseTree.rule contains the ParseRule
used to match the tokens, and ParseTree.children contains a value for each symbol of the rule, where the value is
the token matched for terminals, or another ParseTree for nonterminals.

Optional, Star and Plus

Any Symbol can be declared with optional=True to make it nullable - it must occur zero or one times. Similarly,
star=True allows any number of occurences, min zero, and plus=True allows any number of occurences, min one.
In the resulting parse tree, skipped optional symbols are represented with None. star and plus elements become
tuples:

grammar.add(ParseRule("relative", [T("step", optional=True), T("sister")]))
grammar.add(ParseRule("relative", [T("great", star=True), T("grandfather")]))

print(parse(grammar, "relative", "sister".split()).single())
(relative: None 'sister')

print(parse(grammar, "relative", "step sister".split()).single())
(relative: 'step' 'sister')

print(parse(grammar, "relative", "grandfather".split()).single())
(relative: () 'grandfather')

print(parse(grammar, "relative", "great great grandfather".split()).single())
(relative: ('great', 'great') 'grandfather')

Greedy Symbols

Like in a regular expression, you can mark parts of the grammar as greedy or lazy. In case of ambiguity
the parser will preferentially prefer the parse tree with the more (or fewer) number of occurrences. lazy and greedy
can only be used in combination with optional, plus or star:

grammar.add(ParseRule("described relative", [NT("adjective", star=True), NT("relative")]))
grammar.add(ParseRule("adjective", [T("awesome")]))
grammar.add(ParseRule("adjective", [T("great")]))

print(parse(grammar, "described relative", "great grandfather".split()).single())
-- raises AmbiguousParseError

grammar.add(ParseRule("described relative 2", [NT("adjective", star=True, greedy=True), NT("relative")]))

print(parse(grammar, "described relative 2", "great grandfather".split()).single())
(described relative 2: ((adjective: 'great'),) (relative: () 'grandfather'))

Greediness only trims ambiguous possibilities, so will never cause a sentence fail to parse.

It only affects choices the parser makes when reading from left to right, which means you will still get
ambiguity if the leftmost symbol isn’t marked.

For non-terminals, settings prefer_early and prefer_late work analogously. They instruct the parser that
if there are several possible productions that could be used for a given symbol, to prefer the first (or last) one
in order of definition in the grammar:

grammar.add(ParseRule("dinner order", [T("I"), T("want"), NT("item", prefer_early=True)]))
grammar.add(ParseRule("item", [T("ham")]))
grammar.add(ParseRule("item", [T("eggs")]))
grammar.add(ParseRule("item", [T("ham"), T("and"), T("eggs")]))
grammar.add(ParseRule("item", [NT("item", prefer_early=True), T("and"), NT("item", prefer_early=True)]))

print(parse(grammar, "dinner order", "I want eggs and ham".split()).single())
(dinner order: 'I' 'want' (item: (item: 'eggs') 'and' (item: 'ham')))

print(parse(grammar, "dinner order", "I want ham and eggs".split()).single())
(dinner order: 'I' 'want' (item: 'ham' 'and' 'eggs'))

Penalty

As mentioned above, greedy and related settings only trim ambiguity when the two options have so far parsed identically.

In some circumstances, you wish to avoid a particular rule, no matter how different the alternatives are. You can associate
a penalty with each rule. The parser sums up all the penalties associated with a given parse, and choose only possibly
parses with the lowest sum. This can have wide ranging effects on eliminating ambiguity. Penalties can be viewed as very
lightweight support for probabilistic parsing:

grammar.add(ParseRule("sentence", [NT("noun"), T("like"), T("a"), NT("noun")]))
grammar.add(ParseRule("sentence", [NT("noun"), T("flies"), T("like"), T("a"), NT("noun")]))
grammar.add(ParseRule("noun", [T("fruit"), T("flies")], penalty=1))
grammar.add(ParseRule("noun", [T("fruit")]))
grammar.add(ParseRule("noun", [T("banana")]))

print(parse(grammar, "sentence", "fruit flies like a banana".split()).single())
(sentence: (noun: 'fruit') 'flies' 'like' 'a' (noun: 'banana'))

In the example above the parser chose to avoid the other possible parse
(sentence: (noun: 'fruit' 'flies') 'like' 'a' (noun: 'banana')) because it contains a rule with a penalty.

Penalties can be considered an experimental feature. Most of the time, you can just add more greedy settings to
get the desired effect.

 Copyright 2015, Adam Newgas.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Axaxaxas 1.0 documentation

Customization

Tokens

The parser works on a stream of tokens. Tokens can be any python object, they are not expected to have any particular
behaviour. You may want to provide useful __repr__ and __str__ methods to give better error messages.

Thus, the parse function can work just as effectively on a stream of str, bytes or a stream of single characters
(a scannerless parser [https://en.wikipedia.org/wiki/Scannerless_parsing]). A common technique is for the
lexer to produce some sort of Token object that includes a text string and additional annotations.
For example the Natural Language Toolkit [http://www.nltk.org] can mark each token with the relevant part of speech.

Symbols

Symbols are objects used to define the right hand side of a ParseRule production. Two Symbols, NonTerminal and
Terminal are provided in the symbols module. Anything that duck-types the same as these can be used however.

This is mostly useful for re-defining Terminal.match, which is the method responsible for determining if
a given token matches the terminal. The default Terminal class matches by equality, but, for example,
you may have terminals that match entire classes of tokens.

Customizing ParseTrees

There is no way to customize the ParseTree class. But you can avoid using it entirely by writing your own
Builder. Builders specify a semantic action to take at each step of the parse, allowing you to build your own
parse trees or abstract syntax trees directly from a ParseForest. See Builders
for more details.

Customizing Grammars

You can override ParseRuleSet.get with anything that returns a list of ParseRule objects. As there is no
preprocessing done on the rules, you can generate a grammar on the fly. You can use this feature to parse
context sensitive grammars, by passing any relevant context as part of the head, and adjusting the non-terminals
of the returned rules to forward on relevant context. This will probably lead to very long parse times unless
care is applied.

 Copyright 2015, Adam Newgas.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Axaxaxas 1.0 documentation

Handling Ambiguity

The parse function returns a ParseForest. A ParseForest is an efficient shared representation of multiple
possible ParseTree objects. For some grammars, therefore, you must be careful dealing with ParseForest objects
as they may contains exponentially many possible parses.

single, all, count, and __iter__

These are the basic methods for extracting parse trees from the forest.

ParseForest.single() returns the unique tree in the forest, if there is one, or throws AmbiguousParseError
(see Errors and Edge Cases).

ParseForest.count() returns a count of all the trees.

ParseForest.all() returns a list of all the trees in the forest. It can be quite large.

ParseForest.__iter__() iterates over all the trees in the forest. It is quite a bit slower than all, but it
doesn’t load all the trees into memory at once.

Greedy Rules

Using the greedy, lazy, prefer_early, prefer_late and penalty settings described in Greedy Symbols allows you
to eliminate alternative parses. In the extreme case of marking every nonterminal with prefer_early and
every optional, star and plus symbol with greedy, then you will never have an ambiguous parse.

Builders

Builders are an advanced API that give you fine control over interpreting the parse. You can explicitly
control behaviour in ambiguity by handling Builder.merge().

 Copyright 2015, Adam Newgas.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Axaxaxas 1.0 documentation

Builders

Builders are an advanced way to process a ParseForest. Builders can take advantage of the shared representation the
parse trees inside a forest, and choose how to handle ambiguity.

To use builders, you must define your own builder class inheriting from Builder:

class MyBuilder(Builder):
 def start_rule(self, context):
 ...

 def end_rule(self, context, prev_value):
 ...

 def terminal(self, context, token):
 ...

 def skip_optional(self, context, prev_value):
 ...

 def begin_multiple(self, context, prev_value):
 ...

 def end_multiple(self, context, prev_value):
 ...

 def extend(self, context, prev_value, extension_value):
 ...

Then you can run your builder against a parse forest using ParseForest.apply. The parse forest will then invoke
methods on your builder as it walks over the possible parse tree. Each method is given some context, and the
value currently being built, and returns a new value updated for what occured in the parse.
In this way, you can build a complete picture of the parse tree, one step at a time.

The passed context is a BuilderContext with fields rule,
symbol_index, start_index and
end_index that give details about where in the rule and where in the token stream
this invocation is occuring.

First apply will call start_rule for the matched rule. The result from that is passed to the other methods.

	start_rule is called at the start of each parsed rule.

	end_rule is called at the start of each parsed rule.

	terminal is called when a terminal is parsed.

	extend is called when a given symbol in a rule has been parsed. It is passed both the previous value for that rule
and the extension_value describing what was parsed for that symbol.

	skip_optional is called in place of extend when an optional symbol is skipped over.

	begin_multiple and end_multiple are caused when a star or plus symbol is first encountered and left.
Between them, any number of extend calls may be made, all corresponding to the same symbol.

You may find it easier to study the definitions of CountingBuilder and SingleParseTree builder, which are
internal classes used for implementing ParseForest.count() and ParseForest.single(), as they are both
fairly straightforward. SingleParseTree can be easily adapted to building arbitrary abstract syntax trees,
or performing other semantic actions according to the parse.

Example

For example, suppose that the parse forest only contains a single parse tree, which looks like this:

(rule 1: "a" (rule 2: "b") "c")

In other words, we’ve parsed the token stream ["a", "b", "c"] with the following grammar:

rule1 = ParseRule("rule 1", [T("a"), NT("rule 2"), T("c")])
rule2 = ParseRule("rule 2", [T("b")])

Then the following methods would get invoked during apply (though not necessary in this order):

v1 = builder.start_rule({rule2, 0})
v2 = builder.terminal({rule2, 0}, 'b')
v3 = builder.extend({rule2, 0}, v1, v2)
v4 = builder.end_rule({rule2, 1}, v3)
v5 = builder.start_rule({rule1, 0})
v6 = builder.terminal({rule1, 0}, 'a')
v7 = builder.extend({rule1, 0}, v5, v6)
v8 = builder.extend({rule1, 1}, v7, v4)
v9 = builder.terminal({rule1, 1}, 'c')
v10 = builder.extend({rule1, 2}, v8, v9)
v11 = builder.end_rule({rule1, 3}, v10)

Ambiguity

When there are multiple possible parse trees, sequences of builder results that are shared between parse trees
will only get invoked once, then stored and re-used. This is why some context is omitted from builder methods,
as the call may be used in several contexts. This is also why it is important not to mutate the passed in prev_value,
as it may be used in other contexts. You should always return a fresh value that represents whatever change you
need to make to prev value.

The easiest way to handle amiguity is to use utility methods make_list_builder and make_iter_builder. These methods
accept a builder with no ambiguity handling, and returns a new builder that simply treats every possible parse tree
independently, and return a list or iterable respectively. They directly correspond to the ParseForest.all and
ParseForest.__iter__ methods, which include some additional details.

If you do wish to directly handle ambiguity. You must override either the merge method, or both the
merge_horizontal and merge_vertical methods. All these methods work the same way: you are passed a list of values
that each represent an alternative parse of the same sequence of tokens for the same parse rule or symbol, and you
must return a single value aggregating them.

A merge is “vertical”, and calls merge_vertical when there are multiple possible ParseRule objects with the same
head that match the same sequence of tokens. The BuilderContext indicates the non terminal symbol they both match.
Conversely, merge_horizontal is called when there are multiple possible parses for a single ParseRule. In most use
cases, these methods will share the same implementation, so you are free to override merge instead.

Here is an example of the call sequence for an ambiguous parse of ["hello"] by grammar:

rule1 = ParseRule("sentence", [T("hello")])
rule2 = ParseRule("sentence", [T("hello")])

v1 = builder.start_rule({rule1, 0})
v2 = builder.terminal({rule1, 0}, 'hello')
v3 = builder.extend({rule1, 0}, v1, v2)
v4 = builder.end_rule({rule1, 1}, v3)
v5 = builder.start_rule({rule2, 0})
v6 = builder.terminal({rule2, 0}, 'hello')
v7 = builder.extend({rule2, 0}, v5, v6)
v8 = builder.end_rule({rule2, 1}, v7)
v9 = builder.merge_vertical({None, 0}, [v8, v4])

(Note that in this special case where the top level symbol itself is ambiguous, then None is passed in as the rule
being merged).

Here’s another example, ambiguously parsing ["a"]:

sentence = ParseRule("sentence", [NT("X"),NT("Y")])
X = ParseRule("X", [T("a", optional=True)])
Y = ParseRule("Y", [T("a", optional=True)])

v1 = builder.start_rule({Y, 0}) # After token 0
v2 = builder.skip_optional({Y, 0}, v1)
v3 = builder.end_rule({Y, 1}, v2)
v4 = builder.start_rule({X, 0})
v5 = builder.terminal({X, 0}, 'a')
v6 = builder.extend({X, 0}, v4, v5)
v7 = builder.end_rule({X, 1}, v6)
v8 = builder.start_rule({sentence, 0})
v9 = builder.extend({sentence, 0}, v8, v7)
v10 = builder.start_rule({Y, 0}) # Before token 0
v11 = builder.terminal({Y, 0}, 'a')
v12 = builder.extend({Y, 0}, v10, v11)
v13 = builder.end_rule({Y, 1}, v12)
v14 = builder.skip_optional({X, 0}, v4)
v15 = builder.end_rule({X, 1}, v14)
v16 = builder.extend({sentence, 0}, v8, v15)
v17 = builder.extend({sentence, 1}, v9, v3)
v18 = builder.extend({sentence, 1}, v16, v13)
v19 = builder.merge_horizontal({sentence, 2}, [v17, v18])
v20 = builder.end_rule({sentence, 2}, v19)

The two above examples give a visual indication of the terminology “vertical” and “horizontal”. In the first,
rule1 and rule2 are ambiguous and in vertically column in the grammar definition. In the second, X and
Y are ambiguous, and are horizontally next to each other in a single grammar rule.

 Copyright 2015, Adam Newgas.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Axaxaxas 1.0 documentation

Errors and Edge Cases

There are 3 possible ways that parsing can fail. All of them raise subclasses of ParseError. All instances
of ParseError contain a message, and fields
start_index, end_index indicating where in
the token stream the error is occurring.

No parse

When the parser can find no possible parse for a token stream, it raises NoParseError. The location will be the
furthest the parse got before there were no possible parses. Additional fields are included:

	encountered - The token we failed at, or None if the end of the stream was reached.

	expected_terminals - All the terminals that were evaluated against encountered (and failed)

	expected - Similar to expected_terminals, except the parser includes any non-terminals that could
have started at the encountered token, and hides any terminals or non-terminals that are implicitly covered
another one. This is usually a higher level summary of what was expected at any given point.

Note, you can override method ParseRuleSet.is_anonymous() to return true for some heads. Any anonymous rule
will never be eligible to appear in expected. This is useful if you are transforming or generating the grammar,
and some rules don’t make sense to report.

Ambiguous Parse

Ambiguous parses are not an immediate error. The parse function simply returns a forest which contains all
possible parse trees. However, if you call ParseForest.single and there is ambiguity, then AmbiguousParseError
will be thrown. It will indicate the earliest possible ambiguity, but there may be others. The error will contain a
field called values containing the possible alternatives parses. However, it only contains a subtree of the full parse
tree, and additionally, it may be only halfway through building a rule, so the subtree may be missing elements.
These limitations ensure that values is a short list. It is recommended you do not use ParseForest.single if
you need more detail on ambiguity.

Infinite Parse

In some obscure grammars it is possible to define rules that have an infinite number of possible parses. Here is a
simple example:

ParseRule("s", [NT("s")]
ParseRule("s", [T("word")]

When parsing ["word"], all the following are valid parse trees:

(s: word)
(s: (s: word))
(s: (s: (s: word)))
...

In this circumstance, parse throws InfiniteParseError. You can avoid this error with the right use of greedy and
penalty settings as they are evaluated before checking for infinite parses.

It’s possible to improve support for infinite parses if there is demand. Let me know.

Other notes

The order of evaluation for trimming ambiguity is:

	penalty

	greedy and lazy

	prefer_early and prefer_late

The unparse method can be used to convert ParseTree objects back into lists of tokens.

 Copyright 2015, Adam Newgas.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Axaxaxas 1.0 documentation

Reference

Parsing

	
class axaxaxas.ParseRule(head, symbols, *, penalty=0)

	Represents a single production in a context free grammar.

	
class axaxaxas.ParseTree(rule, children=None)

	Tree structure representing a sucessfully parsed rule

	
class axaxaxas.ParseForest(top_partial_rule)

	Represents a collection of related ParseTree objects.

	
__iter__()

	Iterators over the list of contained ParseTree objects. Calling all is somewhat faster

	
all()

	Returns a list of the contained ParseTree objects

	
apply(builder)

	Constructs a result step at a time using the given Builder.

	
count()

	Returns a count of the contained ParseTree objects

	
single()

	Returns the only ParseTree in the collection, or throws if there are multiple.

	
class axaxaxas.ParseRuleSet

	Stores a set of ParseRule, with fast retrieval by rule head

	
add(rule)

	Adds a new ParseRule to the set

	
get(head, lookahead_token=None)

	Returns a list of ParseRule objects with matching head

	
is_anonymous(head)

	Returns true if a given head symbol should be omitted from error reporting

	
axaxaxas.parse(rule_set, head, tokens, *, fail_if_empty=True)

	Parses a stream of tokens according to the grammer in rule_set by attempting to match
the non-terminal specified by head.

	
axaxaxas.unparse(parse_tree)

	Converts a ParseTree back to a list of tokens

Errors

	
class axaxaxas.ParseError(message, start_index, end_index)

	Base parse error

	
class axaxaxas.AmbiguousParseError(message, start_index, end_index, values)

	Indicates that there were multiple possible parses in a context that requires only one

	
class axaxaxas.NoParseError(message, start_index, end_index, encountered, expected_terminals, expected)

	Indicates there were no possible parses

	
class axaxaxas.InfiniteParseError(message, start_index, end_index)

	Indicates there were infinite possible parses

Building

	
class axaxaxas.BuilderContext

	Contains information about the location and rule currently being parsed. The exact
meaning is specific to each method of Builder.

	
rule

	The relevant ParseRule. Can be None for merge_vertical calls at the top level.

	
symbol_index

	context.rule.symbols[context.symbol_index] indicates the relevant symbol of the rule. Note symbol_index
may be len(context.rule.symbols) in some circumstances.

	
start_index

	The first token in the relevant range of tokens.

	
end_index

	After the last token in the relevant range of tokens.

	
class axaxaxas.Builder

	Abstract base class for constructing parse trees and other objects from a ParseForest.
See Builders for more details.

	
begin_multiple(context, prev_value)

	Called when a plus or star symbols is enountered

	
end_multiple(context, prev_value)

	Called when there are no more matches for a plus or star symbol

	
end_rule(context, prev_value)

	Called when a new rule is completed

	
extend(context, prev_value, extension_value)

	Called when a symbol is matched. Potentially multiple times for a star or plus symbol

	
merge(context, values)

	Called when there are multiple possible parses, unless merge_vertical and
merge_horizontal is overriden.

	
merge_horizontal(context, values)

	Called when there are multiple possible parses of a ParseRule.

	
merge_vertical(context, values)

	Called when multiple possible ParseRule objects could match a non terminal

	
skip_optional(context, prev_value)

	Called when an optional symbol is skipped over

	
start_rule(context)

	Called when a new rule is started

	
terminal(context, token)

	Called when a terminal is matched

	
axaxaxas.make_list_builder(builder)

	Takes a Builder which lacks an implementation for merge_horizontal and merge_vertical, and returns a
new Builder that will accumulate all possible built parse trees into a list

	
axaxaxas.make_iter_builder(builder)

	Takes a Builder which lacks an implemenation for merge_horizontal and merge_vertical, and returns a
new Builder that will accumulate all possible built parse trees into an iterator.

Symbols

	
class axaxaxas.Symbol(*, star=False, optional=False, plus=False, name=None, greedy=False, lazy=False)

	Base class for non-terminals and terminals, this is used when defining ParseRule objects

	
class axaxaxas.NonTerminal(head, prefer_early=False, prefer_late=False, **kwargs)

	Represents a non-terminal symbol in the grammar, matching tokens according to
any ParseRules with the specified head

	
class axaxaxas.Terminal(token, **kwargs)

	Represents a terminal symbol in the grammar, matching a single token of the input

	
match(token)

	Returns true if token is matched by this Terminal

 Copyright 2015, Adam Newgas.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Axaxaxas 1.0 documentation

 Python Module Index

 a

 			

 		
 a	

 	
 	
 axaxaxas	

 Copyright 2015, Adam Newgas.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Axaxaxas 1.0 documentation

Index

 _
 | A
 | B
 | C
 | E
 | G
 | I
 | M
 | N
 | P
 | R
 | S
 | T
 | U

_

 	

 	__iter__() (axaxaxas.ParseForest method)

A

 	

 	add() (axaxaxas.ParseRuleSet method)

 	all() (axaxaxas.ParseForest method)

 	AmbiguousParseError (class in axaxaxas)

 	

 	apply() (axaxaxas.ParseForest method)

 	axaxaxas (module)

B

 	

 	begin_multiple() (axaxaxas.Builder method)

 	Builder (class in axaxaxas)

 	

 	BuilderContext (class in axaxaxas)

C

 	

 	count() (axaxaxas.ParseForest method)

E

 	

 	end_index (axaxaxas.BuilderContext attribute)

 	end_multiple() (axaxaxas.Builder method)

 	

 	end_rule() (axaxaxas.Builder method)

 	extend() (axaxaxas.Builder method)

G

 	

 	get() (axaxaxas.ParseRuleSet method)

I

 	

 	InfiniteParseError (class in axaxaxas)

 	

 	is_anonymous() (axaxaxas.ParseRuleSet method)

M

 	

 	make_iter_builder() (in module axaxaxas)

 	make_list_builder() (in module axaxaxas)

 	match() (axaxaxas.Terminal method)

 	

 	merge() (axaxaxas.Builder method)

 	merge_horizontal() (axaxaxas.Builder method)

 	merge_vertical() (axaxaxas.Builder method)

N

 	

 	NonTerminal (class in axaxaxas)

 	

 	NoParseError (class in axaxaxas)

P

 	

 	parse() (in module axaxaxas)

 	ParseError (class in axaxaxas)

 	ParseForest (class in axaxaxas)

 	

 	ParseRule (class in axaxaxas)

 	ParseRuleSet (class in axaxaxas)

 	ParseTree (class in axaxaxas)

R

 	

 	rule (axaxaxas.BuilderContext attribute)

S

 	

 	single() (axaxaxas.ParseForest method)

 	skip_optional() (axaxaxas.Builder method)

 	start_index (axaxaxas.BuilderContext attribute)

 	

 	start_rule() (axaxaxas.Builder method)

 	Symbol (class in axaxaxas)

 	symbol_index (axaxaxas.BuilderContext attribute)

T

 	

 	Terminal (class in axaxaxas)

 	

 	terminal() (axaxaxas.Builder method)

U

 	

 	unparse() (in module axaxaxas)

 Copyright 2015, Adam Newgas.
 Created using Sphinx 1.3.1.

 _modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Axaxaxas 1.0 documentation »

 All modules for which code is available

		axaxaxas

 © Copyright 2015, Adam Newgas.
 Created using Sphinx 1.3.1.

_static/comment-close.png

_static/minus.png

_static/comment.png

_static/up.png

_static/plus.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Axaxaxas 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Adam Newgas.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_static/ajax-loader.gif

